/** * An informative annotation type used to indicate that an interface * type declaration is intended to be a <i>functional interface</i> as * defined by the Java Language Specification. * * Conceptually, a functional interface has exactly one abstract * method. Since {@linkplain java.lang.reflect.Method#isDefault() * default methods} have an implementation, they are not abstract. If * an interface declares an abstract method overriding one of the * public methods of {@code java.lang.Object}, that also does * <em>not</em> count toward the interface's abstract method count * since any implementation of the interface will have an * implementation from {@code java.lang.Object} or elsewhere. * * <p>Note that instances of functional interfaces can be created with * lambda expressions, method references, or constructor references. * * <p>If a type is annotated with this annotation type, compilers are * required to generate an error message unless: * * <ul> * <li> The type is an interface type and not an annotation type, enum, or class. * <li> The annotated type satisfies the requirements of a functional interface. * </ul> * * <p>However, the compiler will treat any interface meeting the * definition of a functional interface as a functional interface * regardless of whether or not a {@code FunctionalInterface} * annotation is present on the interface declaration. * * @jls 4.3.2. The Class Object * @jls 9.8 Functional Interfaces * @jls 9.4.3 Interface Method Body * @since 1.8 */ @Documented @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.TYPE) public@interface FunctionalInterface {}
/** * Represents an operation that accepts a single input argument and returns no * result. Unlike most other functional interfaces, {@code Consumer} is expected * to operate via side-effects. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #accept(Object)}. * * @param <T> the type of the input to the operation * * @since 1.8 */ @FunctionalInterface publicinterfaceConsumer<T> {
/** * Performs this operation on the given argument. * * @param t the input argument */ voidaccept(T t);
/** * Returns a composed {@code Consumer} that performs, in sequence, this * operation followed by the {@code after} operation. If performing either * operation throws an exception, it is relayed to the caller of the * composed operation. If performing this operation throws an exception, * the {@code after} operation will not be performed. * * @param after the operation to perform after this operation * @return a composed {@code Consumer} that performs in sequence this * operation followed by the {@code after} operation * @throws NullPointerException if {@code after} is null */ default Consumer<T> andThen(Consumer<? super T> after) { Objects.requireNonNull(after); return (T t) -> { accept(t); after.accept(t); }; } }
/** * Represents a supplier of results. * * <p>There is no requirement that a new or distinct result be returned each * time the supplier is invoked. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #get()}. * * @param <T> the type of results supplied by this supplier * * @since 1.8 */ @FunctionalInterface publicinterfaceSupplier<T> {
/** * Gets a result. * * @return a result */ T get(); }
首先此接口只有一个抽象方法get,该方法不接收参数,返回一个T类型的结果。
定义使用类
1 2 3
publicstatic <T> T doSupplier(Supplier<T> supplier) { return supplier.get(); }
/** * Represents a predicate (boolean-valued function) of one argument. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #test(Object)}. * * @param <T> the type of the input to the predicate * * @since 1.8 */ @FunctionalInterface publicinterfacePredicate<T> {
/** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ booleantest(T t);
/** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> and(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } }
/** * Represents a function that accepts one argument and produces a result. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #apply(Object)}. * * @param <T> the type of the input to the function * @param <R> the type of the result of the function * * @since 1.8 */ @FunctionalInterface publicinterfaceFunction<T, R> {
/** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t);
/** * Returns a composed function that first applies the {@code before} * function to its input, and then applies this function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of input to the {@code before} function, and to the * composed function * @param before the function to apply before this function is applied * @return a composed function that first applies the {@code before} * function and then applies this function * @throws NullPointerException if before is null * * @see #andThen(Function) */ default <V> Function<V, R> compose(Function<? super V, ? extends T> before) { Objects.requireNonNull(before); return (V v) -> apply(before.apply(v)); }
/** * Returns a composed function that first applies this function to * its input, and then applies the {@code after} function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of output of the {@code after} function, and of the * composed function * @param after the function to apply after this function is applied * @return a composed function that first applies this function and then * applies the {@code after} function * @throws NullPointerException if after is null * * @see #compose(Function) */ default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) { Objects.requireNonNull(after); return (T t) -> after.apply(apply(t)); }
/** * Returns a function that always returns its input argument. * * @param <T> the type of the input and output objects to the function * @return a function that always returns its input argument */ static <T> Function<T, T> identity() { return t -> t; } }