你真的了解Lambda表达式么?

lambda表达式实战

从例子引出lambda

传递Runnable创建Thread

  • java8之前
1
2
3
4
5
6
Thread thread=new Thread(new Runnable() {
@Override
public void run() {
// do something
}
});
  • java 8 之后
1
new Thread(()->{});

上边的例子比较简单,但是有两个疑问。什么是Lambda表达式?怎么使用lambda表达式?

什么是Lambda表达式?

从上述例子入手,首先我们知道Lambda一般代表的是一个匿名对象;其次我们点击“->”,IDE会帮助我们进入到符合Lambda规范的函数接口。我们来观察下这个符合规范的类的变化。

1
2
3
4
5
// 省略注释
package java.lang;
public interface Runnable {
public abstract void run();
}
1
2
3
4
5
6
// 省略注释
package java.lang;
@FunctionalInterface
public interface Runnable {
public abstract void run();
}

我们发现java8后Runnable接口新增了一个注解@FunctionalInterface。下边我们一起来看下这个注解是什么。

FunctionalInterface
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* An informative annotation type used to indicate that an interface
* type declaration is intended to be a <i>functional interface</i> as
* defined by the Java Language Specification.
*
* Conceptually, a functional interface has exactly one abstract
* method. Since {@linkplain java.lang.reflect.Method#isDefault()
* default methods} have an implementation, they are not abstract. If
* an interface declares an abstract method overriding one of the
* public methods of {@code java.lang.Object}, that also does
* <em>not</em> count toward the interface's abstract method count
* since any implementation of the interface will have an
* implementation from {@code java.lang.Object} or elsewhere.
*
* <p>Note that instances of functional interfaces can be created with
* lambda expressions, method references, or constructor references.
*
* <p>If a type is annotated with this annotation type, compilers are
* required to generate an error message unless:
*
* <ul>
* <li> The type is an interface type and not an annotation type, enum, or class.
* <li> The annotated type satisfies the requirements of a functional interface.
* </ul>
*
* <p>However, the compiler will treat any interface meeting the
* definition of a functional interface as a functional interface
* regardless of whether or not a {@code FunctionalInterface}
* annotation is present on the interface declaration.
*
* @jls 4.3.2. The Class Object
* @jls 9.8 Functional Interfaces
* @jls 9.4.3 Interface Method Body
* @since 1.8
*/
@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface FunctionalInterface {}
  • 上边文档的核心意思是:@FunctionInterface注解是为了表明这个类是一个函数式接口。
  • 函数式接口有这样的特点:只有一个抽象方法。java8提供了default方法,以及超类Object中的方法(toString,Equals),这些方法不计算抽象方法数量的统计中。
  • 使用上:函数式接口可以配合lambda表达式方法引用构造引用使用
  • 如果类上标记了这个注解,编译器会在编译期进行检查
  • 最后,即使我们没有标注这个注解,编译器也会将它看待成一个函数式接口

好了,从上边我们知道了lambda的特点,接下来我们来聊下怎么使用?

如何使用Lambda

首先,我们去官网查阅Java8新特性,找到Lambda表达式的说明。我们从这个文档的“Syntax of Lambda Expressions”部分入手,大概可以得到如下的结论。

Lambda的组成

Lambda主要由下边几部分组成;参数列表,连接符,主体。

  • 参数列表

    • 圆括号内部,参数以“,”分割开来。如(String a,Object b)。
    • 此外,参数的类型和括号,有些时候是可以省略
  • 箭头记号

    • 通过“->”这种特殊符号形式,连接前后。
  • 主体

    • 可以由单个表达式,或者语句块组成。

    • 单个表达式,如”System.out.println(“xxx”)”

    • 语句块

      • 示例1
      1
      2
      3
      {
      System.out.println("xxx");
      }
      • 示例2
      1
      2
      3
      4
      {
      // do something return some result
      return 100;
      }
Lambda的完整用法示例
无返回值的lambda的用例

目的,将具体业务实现交给调用者处理。

  • 定义一个无返回值,符合FunctionInterface规范的接口对象
1
2
3
interface Print<String>{
void printName(String string);
}
使用示例1

我这里的业务逻辑是根据输入参数,执行日志打印操作。实际业务场景下,可能对应的是发送邮件或者MQ这样的具体操作。

1
2
3
4
5
6
7
8
public class LambdaDemo {
public static void main(String[] args) {
PrintSomeThing(name->System.out.println(name),"Hello baigt");
}
public static void PrintSomeThing(Print<String> str,String name) {
str.printName(name);
}
}
使用示例1 的延伸使用
  • 定义 一个使用类
1
2
3
4
5
6
7
8
9
10
11
class Doctor{
String name;
String interest;
public Doctor(String name, String interest) {
this.name = name;
this.interest = interest;
}
public void printName(Print<String> str) {
str.printName(name);
}
}
  • 具体使用
1
2
Doctor doctor=new Doctor("baigt","java and javascript");
doctor.printName(name->System.out.println(name));
有返回值的lambda的用例

目的,将具体业务实现交给调用者处理,并将结果返回。

  • 定义一个有返回值,符合FunctionInterface规范的接口对象
1
2
3
interface GetSomething<String>{
String getThing();
}
  • 定义一个使用者
1
2
3
4
5
6
7
8
9
10
11
12
class Doctor{
String name;
String interest;
public Doctor(String name, String interest) {
this.name = name;
this.interest = interest;
}

public String getInterest(GetSomething<String> get) {
return get.getThing()+","+name;
}
}
  • 使用示例

我这里的业务逻辑是根据输入参数(隐式interest),计算出一个结果返回出来,并对这个结果执行打印操作。

1
2
Doctor doctor=new Doctor("baigt","java and javascript");
System.out.println(doctor.getInterest(() -> "Hi"));

到此处,我们已经大概明白lambda表达式的基本用法。但是还会有两个疑问?

  • 上边例子我们自定义了几个函数式接口,那么还有其他常用的函数式接口?
  • 函数式接口不仅可以通过lambda表达式使用,还可以通过方法引用和构造引用来使用。那么这种引用又是怎么回事?

常用函数接口

我们选中@FunctionInterface注解类,通过Ide的Find Usages功能,会发现在java.util.function包下java8新增了很多类。这里挑几个基础的(其他的基本是功能上的增强或变种)来说。大致上有这么几种。

  • Consumer
  • Supplier
  • Predicate
  • Function

下边会做一个简单的说明和使用。可能不会细致的去讲每一个Api。旨在让大家快速熟悉使用java8 lambda。

Consumer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Represents an operation that accepts a single input argument and returns no
* result. Unlike most other functional interfaces, {@code Consumer} is expected
* to operate via side-effects.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #accept(Object)}.
*
* @param <T> the type of the input to the operation
*
* @since 1.8
*/
@FunctionalInterface
public interface Consumer<T> {

/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);

/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}

首先此接口只有一个抽象方法accept,该方法接收一个入参,不返回结果

定义使用类
1
2
3
public static void doConsumer(Consumer consumer,String input) {
consumer.accept(input);
}
  • 使用示例1

接收 “something input”输入,并执行打印操作

1
2
Consumer consumer = input -> System.out.println(input);
doConsumer(consumer,"something input");
  • 使用示例2

将两个Consumer操作串连起来,andThen的后执行。

1
2
3
4
Consumer consumer = input -> System.out.println(input);
doConsumer(consumer.andThen(input2->{
System.out.println("input2");
}),"something input");
Supplier
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* Represents a supplier of results.
*
* <p>There is no requirement that a new or distinct result be returned each
* time the supplier is invoked.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #get()}.
*
* @param <T> the type of results supplied by this supplier
*
* @since 1.8
*/
@FunctionalInterface
public interface Supplier<T> {

/**
* Gets a result.
*
* @return a result
*/
T get();
}

首先此接口只有一个抽象方法get,该方法不接收参数,返回一个T类型的结果

定义使用类
1
2
3
public static <T> T doSupplier(Supplier<T> supplier) {
return supplier.get();
}
  • 使用示例1

不传入参数,生成一个指定类型为String或Integer的对象

1
2
System.out.println(doSupplier(() -> "baigt"));
System.out.println(doSupplier(() -> {return Integer.valueOf("10");}));
Predicate
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import java.util.Objects;

/**
* Represents a predicate (boolean-valued function) of one argument.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #test(Object)}.
*
* @param <T> the type of the input to the predicate
*
* @since 1.8
*/
@FunctionalInterface
public interface Predicate<T> {

/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);

/**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
}

首先此接口只有一个抽象方法test,该方法接受一个T类型的对象,返回一个boolean类型的结果

定义使用类
1
2
3
public static boolean doPredicate(Predicate<String> predicate,String string) {
return predicate.test(string);
}
  • 使用示例1

根据条件,判断输入对象是否符合过滤规则。

1
2
3
System.out.println(doPredicate(input -> input.length() > 5, "12345"));
System.out.println(doPredicate(((Predicate<String>) (input -> input.length() > 5))
.and(input -> input.equalsIgnoreCase("12345")), "12345"));
Function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import java.util.Objects;

/**
* Represents a function that accepts one argument and produces a result.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #apply(Object)}.
*
* @param <T> the type of the input to the function
* @param <R> the type of the result of the function
*
* @since 1.8
*/
@FunctionalInterface
public interface Function<T, R> {

/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);

/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}

/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}

/**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}

首先此接口只有一个抽象方法apply,该方法接收一个T类型对象,返回一个R类型的结果。

定义使用类
1
2
3
public static Integer doFunction(Function<String,Integer> function,String input) {
return function.apply(input);
}
  • 使用示例1

接收一个String类型的入参,返回Integer类型的结果。示例中没做具体异常判断。

1
2
3
4
5
6
7
8
9
10
11
12
System.out.println(doFunction(input -> input.length(), "baigt"));
// 上述结果为 5
System.out.println(doFunction(((Function<String, Integer>) (input -> input.length())).compose(input -> String.valueOf(input.length() * 3)), "baigt"));
// 上述结果为 2
System.out.println(doFunction(((Function<String, Integer>) (input -> {
System.out.println("notcompose:"+input);
return Integer.valueOf(input)+1;
})).compose(input -> {
System.out.println("compose:"+input);
return String.valueOf(Integer.valueOf(input)*3);
}), "22"));
// 上述结果为 67

compose是先执行的部分,上述例子中,是根据输入参数进行进一步的加工,再作为输入参数传递给具体调用者。

引用

前边提到了方法引用和构造引用两种,其实构造引用是一种特殊方法引用。具体参照官方文档说明中“Kinds of Method References”部分。

种类 用例
类名::静态方法 String::valueOf
实例对象::实例方法 doctor1::getInterest
类名::实例方法 String::toUpperCase
类名::new (构造引用) String::new
静态引用
  • 使用类
1
2
3
public static String doStaticReference(Function<Integer,String> function, Integer input) {
return function.apply(input);
}
  • 示例
1
doStaticReference(String::valueOf,123456);
实例对象引用实例方法
  • 使用类
1
2
3
4
5
6
7
8
9
10
11
class Doctor{
String name;
String interest;
public Doctor(String name, String interest) {
this.name = name;
this.interest = interest;
}
public String getStringInstance(){
return new String(name);
}
}
  • 示例
1
2
Doctor doctor1=new Doctor("baigt007","java");
Supplier<String> instance = doctor1::getInterest;
类引用实例方法
  • 使用类
1
2
3
public static String doMethodReference(Function<String,String> function, String input) {
return function.apply(input);
}
  • 示例
1
doMethodReference(String::toUpperCase,"baigt");O
构造引用
  • 示例
1
Supplier<String> stringInstance = String::new;

原文地址:https://my.oschina.net/lt0314/blog/3144851

如果大家喜欢我的文章,可以关注个人订阅号。欢迎随时留言、交流。

简栈文化服务订阅号